Datorgrafik HT 2006

Curves and Surfaces
Splines, NURBS and such

By
UIf Assarsson

Most of the material is originally made by Edward Angel and
modified by UIf Assarsson. Some is made by Magnus Bondesson

Introduction

Read "KURV- OCH YTAPPROXIMATION MED POLYNOM” by

Magnus Bondesson:
— http://www.ce.chalmers.se/edu/year/2006/course/EDA360/DG_KURV2004.pdf

» See also course book, Angel "Interactive Computer Graphics — A

Top-Down Approach Using OpenGL” chapter 11, pages 569-624

+ Las avsnitt 24, sid 34-38 i "Introduktion till OpenGL"-haftet pa

kurshemsidan.

+ OH 114-138

Objectives
*Introduce types of curves and surfaces
—Explicit
—Implicit
—Parametric

Modeling with Curves

o o \
interpolating data point

data points
approximating curve

What Makes a Good
Representation?

* There are many ways to represent curves
and surfaces
*Want a representation that is
—Stable
—Smooth
—Easy to evaluate

—Must we interpolate or can we just come close
to data?

—Do we need derivatives?

Explicit Representation

* Most familiar form of curve in 2D

y=f(X)

«Cannot represent all curves Y /\/
—Vertical lines
—Circles

* Extension to 3D y
-y=f(x), z=g(x)

—The form z = f(x,y) defines a surface

X

Implicit Representation

* Two dimensional curve(s)
g(xy)=0
*Much more robust
—All lines ax+by+c=0
—Circles x2+y?2-r2=0
* Three dimensions g(x,y,z)=0 defines a

surface
—Intersect two surface to get a curve

Parametric Curves

» Separate equation for each spatial variable

x=x(u)

y=y(u) PU)=Ix(u), y(u), ()]

z=z(u)

*For Unax 2 U 2 Up, We trace out a curve in two or
three dimensions
(u)
p(umax)
p(umin)

Selecting Functions

« Usually we can select “good” functions
—not unique for a given spatial curve
— Approximate or interpolate known data
—Want functions which are easy to evaluate
—Want functions which are easy to differentiate
» Computation of normals
» Connecting pieces (segments)
—Want functions which are smooth

Parametric Lines

We can let u be over the interval (0,1)

Parametric Surfaces

* Surfaces require 2 parameters

x=x(u,v) y
y=y(u,v) p(O.v)
z=z(u,v)

p(u,Vv) = [x(u,v), y(u,v), z(uv)]"
*Want same properties as curves:

—Smoothness

—Differentiability

—Ease of evaluation

Line connecting two points p, and p, p(L)=p,;
P(U)=(1-u)po*up,
P(0) = po
Ray from py in the direction d P(L)=po +d
p(U)=pg+ud d
P(©) = po
Normals

We can differentiate with respect to u and v to
obtain the normal at any point p

ox(u,v)/ou 5 ox(u,v)/ov
%= ayuwyou| Py vrav
Y vl o2(u,v) /v

")

\

L _p(uY) | ap(u,v) -
ou ov =

Parametric Planes

point-vector form
p(u,v)=pgtug+vr

n=qgxr

el
S
=}

(three-point form P,

q=P1—Po D,
r=p,—po)

Curve Segments

« After normalizing u, each curve is written

p(u)=[x(u), y(u), ()], 1=2u=0

* In classical numerical methods, we design a

single global curve

* In computer graphics and CAD, it is better to

design small connected curve segments
p(u) join point p(1) = q(0)

b(0) q(u) q(1)

We choose Polynomials

*Easy to evaluate
* Continuous and differentiable everywhere
—Must worry about continuity at join points
including continuity of derivatives

p(u)

N

join point p(1) = q(0)
but p’(1) = q’(0)

Parametric Polynomial Curves

N M L
X(U) =D cau' YU =Y cyu z(U)=) cuu
i=0 j=0 k=0
«Cubic polynomials gives N=M=L=3

*Noting that the curves for X, y and z are independent,
we can define each independently in an identical manner

L
We will use the form p(u) =D ¢ u
where p can be any of X, y,z k=0

Cubic Parametric Polynomials

* Cubic polynomials give balance between ease of
evaluation and erxgibiIity in design

p(u) = ZCk Uk

* Four coefficients to determine for each of x, y
and z
* Seek four independent conditions for various
values of u resulting in 4 equations in 4
unknowns for each of x, y and z
—Conditions are a mixture of continuity
requirements at the join points and conditions
for fitting the data

Objectives

* Introduce the types of curves
— Interpolating
« Blending polynomials for interpolation of 4 control points (fit curve to 4
control points)
—Hermite
« fit curve to 2 control points + 2 derivatives (tangents)
—Bezier
« 2 interpolating control points + 2 intermediate points to define the
tangents
—B-spline
« To get C2 continuity
—NURBS
« Different weights of the control points

* Analyze them

Matrix-Vector Form

3
p(u) = ZCk Uk
k=0

Co 1

. C1 u

define C= u=| ,
C2 u

Cs U3

then p(U)=u C=cu

Interpolating Curve

/)\/m

Po p,

Given four data (control) points py , p;.P, , P3
determine cubic p(u) which passes through them

Must find ¢, ,¢; ,C, , C3

Interpolation Equations p/;\/ >
0 P2

p(u) = ¢y + Cqu + Cyu? + caud
apply the interpolating conditions at u=0, 1/3, 2/3, 1

Pe=P(0)=C,
p1=p(1/3)=cy+(1/3)c,+(1/3)%c,+(1/3)3¢,
p,=p(2/3)=cy+(2/3)c,+(2/3)%c,+(2/3)3c,
P3=p(L)=Cotc;+Cy+ey

or in matrix form with p = [p, P4 P, P3]"

1 0 0 0

B0
()0

1 1 1

p=Ac A=

le., c=Alp

Interpolation Matrix

Solving for ¢ we find the interpolation matrix

1 0 0 0
4 |-55 9 -45 1
M=A = 9 -225 18 -45
-45 135 -135 45

c=Mp

Note that M, does not depend on input data and
can be used for each segmentin x, y, and z

Interpolating Multiple Segments

-l P,

g R T,
Pos” ?T\,/;z ’ \“F"s"
P
= T
use p = [py Py P Pl” use p = [Pz P4 Ps Pel

Get continuity at join points but not
continuity of derivatives

Blending Functionm
1 P3

Rewriting the equation for p(u) Po P,
p(u)=uTc=u™™p = b(u)'p
where b(u) = [by(u) by (u) b,(u) by(u)]Tis
an array of blending polynomials such that
p(u) = by(U)pg+ by(U)py+ by (U)p,+ by(U)ps
bo(u) = -4.5(u-1/3)(u-2/3)(u-1)
b,(u) = 13.5u (u-2/3)(u-1)
b,(u) = -13.5u (u-1/3)(u-1)
by(u) = 4.5u (u-1/3)(u-2/3)

Blending Functlonsﬁ\/m

Po p,
* byl f:?{_v]

by c r.:'&.:'[.4

Blending Patches T

3 3 o B
PUV)=Y" Dciu'v' el
i=o j=0

3

pUV=Y

3 z
bi (U)b; (V) p;

i=o j=0

Each b;(u)b;(v) is a blending patch

Shows that we can build and analyze surfaces
from our knowledge of curves

Hermite Curves and Surfaces

*How can we get around the limitations of
the interpolating form
—Lack of smoothness
—Discontinuous derivatives at join points
*We have four conditions (for cubics) that
we can apply to each segment
—Use them other than for interpolation
—Need only come close to the data

Hermite Form

p’(0) p’(1)

p(0) p(1)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments

o)
Equations PO P

p(u) = cy*tuc,+uc,+udc,

Interpolating conditions are the same at ends

P(0) =po=¢o
P(L) = p3= Co+Cy+CyHCy

Differentiating we find p’(u) = c,+2uc,+3u?c,

Evaluating at end points

p,] 1 00 0
PO)=po=0¢ po| |11 11
p*(1) = p’s=Cy+2¢,+3c, q= 0, “lo 10 0

Pl 012 3

Matrix Form

Pl [1 00 0O

e (1111
q_;)'0_01000

p3l [0 1 2 3
Solving, we find c=M,q where M, is the Hermite matrix

1 0 0 O

o 0o 1 0
M“_—33—2—1

2 -2 1 1

Blending Polynomials

p(u) = b(u)q p(u) =u™yq
2u3_3u2+1 1 0 0 O
00 1 0
O I B S ‘1]
w202 +u 2 -2 1 1
u-u?

Although these functions are smooth, the Hermite form
is not used directly in Computer Graphics and CAD
because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form

Parametric and Geometric
Continuity

*We can require the derivatives of x, y,and z
to each be continuous at join points
(parametric continuity)

* Alternately, we can only require that the
tangents of the resulting curve be
continuous (geometry continuity)

*The latter gives more flexibility as we have
need satisfy only two conditions rather than
three at each join point

Continuity
Y
ﬂ\/ /»\) //J o
@ [® [@© /@

i

» A) Non-continuous
+ B) COcontinuous
« C) G'-continuous
+ D) C'-continuous
« (C2-continuous)

Example

*Here the p and q have the same tangents
at the ends of the segment but different
derivatives A

«Generate different q10) ,‘ \al)
Hermite curves

* This techniques is used

in drawing applications

PO} Pl

Higher Dimensional
Approximations

* The techniques for both interpolating and
Hermite curves can be used with higher
dimensional parametric polynomials

«For interpolating form, the resulting matrix
becomes increasingly more ill-conditioned
and the resulting curves less smooth and
more prone to numerical errors

*In both cases, there is more work in
rendering the resulting polynomial curves
and surfaces

Bezier's Idea

«In graphics and CAD, we do not usually
have derivative data

*Bezier suggested using the same 4 data
points as with the cubic interpolating curve
to approximate the derivatives in the
Hermite form

Approximating Derivatives

o))

p, located at u=1/3 p, located at u=2/3

! P.— P ! P;—P,
0)~ 2= 1)~ —=—T2
p'(0) 13 p'@) 173
slope p’(0) ~— _-Slope p’(1)

Ps

Po Uu—

Py P2
Equations /\

Po P3
Interpolating conditions are the same P(U) = CyHuc, HI2e,+U%C,

P(0) = po=Co
P(L) = p3= Co+Cy+CyHCy

Approximating derivative conditions
p’(0) = 3(py-Po) = o
p’(1) = 3(ps-po) = €, +2¢,+3cy

Solve four linear equations for c=Mgp

Bezier Matrix

1 0 00
33 0 0
M:=l3 6 3 0
1 3 -31

p(u) = U™™gp = b(u)Tp

blending functions

P1 <Pz
Blending Functions /\

Po Ps

(@-uy’
3u(1-u)?

b(u)= 202 (1-u)

Note that all zeros are at 0 and 1 which forces
the functions to be smoother over (0,1)
Smoother because the curve stays inside the convex

hull, and therefore does not have room to fluctuate so
much.

Bernstein Polynomials

*The blending functions are a special case
of the Bernstein polynomials
d! k d-k
U)y=————u@d-u
bia (U) k!(d—k)!u A-u)
* These polynomials give the blending
polynomials for any degree Bezier form
—All zeros at 0 and 1
—For any degree they all sum to 1
—They are all between 0 and 1 inside [0,1]

Convex Hull Property

« All weights within [0,1] ensures that all Bezier
curves lie in the convex hull of their control points

* Hence, even though we do not interpolate all the
data, we cannot be too far away

Py P2
. convex hull
Bezier curve

Po Ps

Bezier Patches

Using same data array P=[p;] as with interpolating form

p(UV) =3 b (W) by (v) Py =u” Me P MEV

i=0 j=0

Patch lies in
convex hull

Analysis

« Although the Bezier form is much better than
the interpolating form, we have the derivatives
are not continuous at join points

*What shall we do to solve this?

B-Splines

*Basis splines: use the data at
P=[pi.2 Pi.1 Pi Pi1]" to define curve only
between p;; and p;

* Allows us to apply more continuity
conditions to each segment

*For cubics, we can have continuity of
function, first and second derivatives at join
points

Cubic B-spline

p(u) = u™™gp = b(u)p

p,e
1 4 1 0 1 op,
M. - 3.0 3 0
B R PO} pll)
13 -31 P,

Blending Functions

bobw bob
(1—u)3 Bl
_R,2 3
b(u):l 4-6y“+3y
6(1+3u+3u%-3u°

U3 | Bifu) by} Byglu]

convex hull property

Splines and Basis

+If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through the
blending functions) to four segments

*We can rewrite p(u) in terms of the data

points as
pW)=> BU)p
defining the basis functions {B;(u)}

Lighd

i1 -p,
Basis Functions . e P
*P3
In terms of the blending polynomials
0 u<i-2
bo(U+2) i-2<u<i-1' i1 b
_b(u+l) i-1<u<i ik
Bi(u)= b, (U) i<u<i+l
bs(U-1) i+lsu<i+2 | k! i <o
0 uzi+2 =2 a3l ! *
P

Po.

°Ps

Ett till exempel

Ps Po P1 P2 Ps Py Po

P

B-Spline Patches

pUY) =S b, U)b; () Py = U Me P MLV

i=0 j=0
defined over only 1/9 of region

Pso. /
ey — P

Pooe ®Pos

Generalizing Splines

*We can extend to splines of any degree
*Data and conditions to not have to be given
at equally spaced values (the knots)
—Nonuniform and uniform splines
—Can have repeated knots

+ Can force spline to interpolate points

* (Cox-deBoor recursion gives method of evaluation (also
known as deCasteljau-recursion, see page 597 for
details))

NURBS

*Nonuniform Rational B-Spline curves and
surfaces add a fourth variable w to x,y,z

—Can interpret as weight to give more
importance to some control data

—Can also interpret as moving to homogeneous
coordinate

*Requires a perspective division
—NURBS act correctly for perspective viewing
*Quadrics are a special case of NURBS

NURBS

B-Splines: (sammanfattning for jamforelse)
Givet: n+1 punkter Py, Py, ..., P,..
Man kan skriva:

Pi(t) = Bi_4(P;i_1 + B(P; + B 4()Pi. 4 + By, o(BP;

dar

1
(2= ey 1<ld<2

ol—

i1 3 3
B (1|| S+ 300 -1 =30 =17 M=
3

0 2=

NURBS

NURBS: Basfunktionen Bj(t), 0<i<n, bestdmd av
skarvfoljden (eng. knot vector) [t-2,t-1,t;,t+1,t+2].
M a o "centrerad" kring t, och 0 utanfér intervallet
[t-2,t+2].

Fér B-Splines hade vi: p(U)=Y Bi(U) p,

For NURBS kan vi aven ange vikter for varje punkt.
Motsvarande NURBS-approximation blir:

+2z
2 w. B AP, Man dividerar med summan av
14 4 vikterna for att genomsnittsvikten hos
Py = f,.I*]— punkterna skall bli 1. Annars infor
. man namligen en férskjutning av
Z w8 (1) kurvan - vilket iofs kan vara "kul” men
j=i-1 ' oftast inte Snskvart.

NURBS

Concider a control point in 3 dimensions:
Pi :[Xil yivzi]
* The weighted homogeneous-coordinate is:

» The idea is to use the weights w; to increase or
decrease the importance of a particular control
point

NURBS

 The first three components of the resulting
spline are simply the B-spline representation of
the weighted points:
X(u)

q(u)=|y()|= z B; 4 (U)W;p;
zu) | *°
* The w-component is the scalar B-spline
polynomial derived from the set of weights:

Man dividerar med summan av
n vikterna for att genomsnittsvikten hos
W(U) = z B. d (U)W punkterna skall bli 1. Annars infor
n h ' | 'man namligen en forskjutning av
0 kurvan - vilket iofs kan vara "kul” men
oftast inte dnskvart.

NURBS

» The w-component may not be equal to 1.
* Thus we must do a perpsective division to get
the three-dimensional points:
s BLaWip(0)
p(u) =——~q(u) = Z'ﬂ :
() B.oW,

« Each component of p(u) is now a rational
function in u, and because we have not
restricted the knots (the knots does not have to
be uniformly distributed), we have derived a
nonuniform rational B-spline (NURBS) curve

i=0

NURBS

« If we apply an affine transformation to a B-spline curve
or surface, we get the same function as the B-spline
derived from the transformed control points.

« Because perspective transformations are not affine,
most splines will not be handled correctly in perspective
viewing.

« However, the perspective division embedded in the
NURBS ensures that NURBS curves are handled
correctly in perspective views.

* Quadrics can be shown to be a special case of quadratic
NURBS curve; thus, we can use a single modeling
method, NURBS curves, for the most widely used curves
and surfaces

NURBS and Subdivision
Surfaces

Det finns tva huvudmetoder for konstruktion av kurvor och ytor:
« Splines: Olika former av splines, framfor allt B-splines och NURBS. Utgaende fran
ett antal punkter satts ett uttryck for kurvan eller ytan upga pa parameterform. Kurvan
ritas utifran denna parameterframstalining. Upplevs av de flesta som rétt matematiskt
och krangligt. Stéds av OpenGL. Behandlas | det separata pappret Kurv- och
ytapproximation, samt i OpenGL-haftet, avsnitt 24.
« Uppdelningsmetoder (eng. subdivision). Ytligt sett mera praktiskt. Utgaende fran
ett antal punkter infor man successivt nya punkter och modifierar samtidigt de gamla.
Darefter ritas kurvan genom ett polygontag genom punkterna. Man far automatiskt
sina objekt i flera upplosningar. Att analysera metoderna matematiskt ar déremot inte
1att. Inget direkt stod i OpenGL. Liksom alla kommersiella modelleringsprogram har
Blender och Art Of ||Iu5|on verktyg (om &n begrénsade) for uppdelning.
Anvandningsomradet &r ytor. Blev populéra i slutet av 1990-talet.

| bada fallen skilier man pa interpolerande kurvor/
ytor och approximerande kurvor/ytor. Vi agnar
oss mest at den senare typen. Kurvan/ytan gar da
inte sakert igenom de olika styrpunkter som man
utgar ifran.

Subdivision surface

Rendering Curves and
Surfaces

deCasteljau'! Recursion

*We can use the convex hull property of
Bezier curves to obtain an efficient
recursive method that does not require any
function evaluations

—Uses only the values at the control points

*Based on the idea that “any polynomial and
any part of a polynomial is a Bezier
polynomial for properly chosen control
data”

" Paul de Casteljau och Pierre Bezier var bilingenjérer. Den forre vid Peugot och den

andre vid Renault. Bdda jobbade med Bezier-kurvor utan att kénna till varandras arbete.

Splitting a Cubic Bezier

Pos P1. P2, Pz determine a cubic Bezier polynomial
and its convex hull\ \

Consider left half I(u) and right half r(u)

I(u) and r(u)

Since I(u) and r(u) are Bezier curves, we should be able to
find two sets of control points {l, I, I,, I} and {ry, ry, 1, 13}
that determine them

Convex Hulls

{lo I, 1, 15} and {ry, ry, 1,, r;}each have a convex hull that
that is closer to p(u) than the convex hull of {p,, p;, p,, Ps}
This is known as the variation diminishing property.

The polyline from Iy to I, (=r,) to r;is an approximation
to p(u). Repeating recursively we get better approximations.

Equations

Start with Bezier equations p(u)=u™™gp
I(u) must interpolate p(0) and p(1/2)

10) = 1y=pg
I(1) = 15=p(1/2) = 1/8(po +3p; +3p, +P3)

Matching slopes, taking into account that I(u) and r(u)
only go over half the distance as p(u)

I7(0) = 3(1; - 1p) = p’(0) = 3/2(py - Po)
I(1) = 3(l3 = 1) = p’(1/2) = 3/8(- po - Py+ P2+ Po)

Symmetric equations hold for r(u)

Efficient Form

lo= 1o

3= Ps

I, =Y%(po+ P1)

Iy = %2(p, + Pa)

I, =Y2(l, + %2(p, + py))

1 =Ya(r, + %2(py + py))
l3=1o=Ya(l, + 1) Po=l,

Requires only shifts and adds!

Every Curve is a Bezier Curve

*We can render a given polynomial using the
recursive method if we find control points for its
representation as a Bezier curve

* Suppose that p(u) is given as an interpolating
curve with control points g

p(w=uT™q

* There exist Bezier control points p such that

p(u)=u"Mgp

+ Equating and solving, we find p=MgM,

Matrices Example
15 0 03 2 These three curves were all generated from the same
- 3 - = original data using Bezier recursion by converting all
Interpolating to Bezier Mz M = 16 3 2 35 control point data to Bezier control points
- 2 3 _=
3 2 6
0 0 0 1
1410
. . 0420
B-Spline to Bezier IMs =
P MeMs=lo 2 4 0 :)
0141 Bezier Interpolating B Spline
Surfaces Second Subdivision

« Can apply the recursive method to surfaces if we
recall that for a Bezier patch curves of constant u
(or v) are Bezier curves in u (or v)

« First subdivide in u

—Process creates new points

—Some of the original points are discarded
original and discarded

original and kep

® New paints created by subdivision
o Old points discorded ofter subdivision
& Old points retained after subdivision

- gy

I

Pﬁ? Pi3
: .

*Pys

THE END

- OBS!!!
+ INGEN FORELASNING NU PA FREDAG
6:e oktober.

